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FIG. 5. (Color online) Joint contour net graph of the densities at
qN = 0.2 at temperature T = 0.00 MeV (a) and T = 1.50 MeV (b).

in the collective space, with q(min) the value of Q̂N where
scission has completed (=the actual scission point) and q(max)

the value corresponding to the precursor to scission. We note

TABLE II. Interval Iq = [q(min),q(max)] of scission configurations
as obtained from the JCN analysis of 240Pu as a function of the
temperature T .

T (MeV) q(min) q(max) T (MeV) q(min) q(max)

0.00 0.2 2.6 1.00 0.3 3.1
0.25 0.2 2.5 1.25 0.5 3.1
0.50 0.2 2.8 1.50 0.5 3.1
0.75 0.2 3.0 1.75 0.7 3.1

that the precursor value is relatively stable, especially at high
temperatures, while the position of the scission point, which is
constant up to T = 1.0 MeV, moves to thicker necks beyond
T > 0.75 MeV. We return to this result in Sec. IV E.

The JCN also picked up an interesting “zippering effect”
of the data sets (the proton and neutron densities) at large
temperatures and low qN values. This effect is illustrated
in Fig. 5, which shows the JCN at qN = 0.2 at both T =
0.0 MeV (top) and T = 1.5 MeV (bottom). In both cases, the
fragments are clearly formed, as evidenced by the two distinct
branches in the upper right side of each figure. In addition,
we notice at T = 1.5 MeV a complex pattern connecting
the two fragments, which look similar to a zipper. We have
found that this pattern becomes more noticeable for T ! 1.25
MeV. Because the zippering connects the two prefragments,
it should be indicative of a spatial connection between these
two distinct regions of space; in addition, the effect manifests
itself only at temperatures where the coupling to the continuum
becomes sizable (see Sec. IV D). Therefore, we suggest that
the zippering effect of the JCN is the representation of a
spatial delocalization of quasiparticles (mostly neutrons) at
large temperatures.

B. Quasiparticle occupations

The generalization at T > 0 of the procedure to identify
a left fragment and a right fragment, their observables and
their interaction energy presented in (I) is straightforward.
Using the definition (9) for the one-body density matrix at
finite temperature T > 0, we find that the coordinate space
representation ρµ(rσ,r ′σ ′) of the density of a single qp µ
reads

ρµ(rσ,r ′σ ′) =
∑

ij

[V ∗
iµ(1 − fµ)Vjµ + UiµfµU ∗

jµ]

×φi(rσ )φ∗
j (r ′σ ′), (15)

with φi(rσ ) the single-particle basis functions. With this
definition, the spatial occupation Nµ of the qp µ and the total
number of particles N are formally the same as at T = 0; that
is,

Nµ =
∑

σ

∫
d3r ρµ(rσ,rσ ), (16)

and

Nµ =
∑

i

[V ∗
iµ(1 − fµ)Viµ + UiµfµU ∗

iµ]. (17)

As in (I), we introduce the quantity

dij (z) =
∑

σ

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ z

−∞
dz φi(rσ )φ∗

j (rσ ). (18)

Still assuming that the neck between the two fragments is
located on the z axis of the intrinsic reference frame and
thus has the coordinates rneck = (0,0,zN ), we can define the
occupation of the qp in the fragment (1) as

N1,µ =
∑

ij

[V ∗
iµ(1 − fµ)Vjµ + UiµfµU ∗

jµ]dij (zN ). (19)
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