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FIG. 14. (Color online) JCN graphs near the scission for 240Pu at
qN = 4.0 (a) and at qN = 0.1 (b). The principal feature visible is that
the single branch for high isovalues of the densities (upper right side
of top figure) at qN = 4.0 has forked into two distinct high isovalues
branches (upper right side of bottom figure) at qN = 0.1, each branch
featuring starbursts.

construction is topologically rigorous. The only input to
analysis is the spatial representation of the neutron and proton
densities, and the single output is an estimate of the interval
Iq where scission occurs. When scanning the entire range in
qN value from 0 to 4.5, we have found that the interval Iq was
Iq = [0.2,2.6] for SkM* and UNEDF0, and Iq = [0.2,2.2] for
UNEDF1.

For applications to nuclear fission, joint contour net analysis
depends principally on the level at which the density values
are quantized into slabs. Initial work showed that analysis can
detect scission at different levels of quantization, with finer
levels of quantization narrowing the candidate scission point
to a smaller number of sites [95]. Beyond a certain limit no
further narrowing was observed, suggesting that the analysis
is then constrained by the data, that is, independent of the
quantization level.

C. Fission fragment identification

Topological methods such as the JCN can automate the
identification of a putative scission region in the collective
space. In order to compute fission fragment properties within
this region, the density matrix and pairing tensor of each of the

fragments must be determined. We start from the set of quasi-
particles for the compound nucleus defined by the Bogoliubov
matrices U and V . The coordinate space representation of the
full one-body density matrix (in coordinate⊗spin space) reads

ρ(rσ,r ′σ ′) =
∑

ij

ρijφi(rσ )φ∗
j (r ′σ ′), (7)

with φi(rσ ) the basis functions, and ρij =
∑

ij V ∗
iµVjµ the

configuration space representation of the density matrix. We
can introduce a quasiparticle (q.p.) density ρµ(rσ,r ′σ ′) by

ρµ(rσ,r ′σ ′) =
∑

ij

V ∗
iµVjµ φi(rσ )φ∗

j (r ′σ ′), (8)

such that the occupation Nµ of a single quasiparticle µ is
simply

Nµ =
∑

σ

∫
d3r ρµ(rσ,rσ ). (9)

Since the basis {φi} is orthonormal, this reduces to the well-
known expression Nµ =

∑
ij V ∗

iµVjµ, with the total number
of particles defined as N =

∑
µ Nµ. Let us assume the neck is

located along the z axis of the intrinsic reference frame, and
thus has the coordinates rneck = (0,0,zN ). We can then define
the occupation of the q.p. µ in the fragment (1) as

N1,µ =
∑

ij

V ∗
iµVjµdij (zN ), (10)

where

dij (z) =
∑

σ

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ z

−∞
dz φi(rσ )φ∗

j (rσ ). (11)

The occupation of the q.p. in the fragment (2) is simply N2,µ =
Nµ − N1,µ. We then assign the q.p. µ to fragment (1) if N1,µ !
0.5Nµ, and to fragment (2) if N1,µ < 0.5Nµ. In this way, the
full set of q.p. is partitioned in two subsets, each corresponding
to one of the fragments.

These two sets of q.p.’s allow us to build the analogs of
the density matrix and the pairing tensor for the fragments. In
coordinate⊗spin space, we will thus define

ρf(rσ,r ′σ ′) =
∑

µ∈(f)

∑

ij

V ∗
iµVjµ φi(rσ )φ∗

j (r ′σ ′), (12)

κf(rσ,r ′σ ′) =
∑

µ∈(f)

∑

ij

V ∗
iµUjµ φi(rσ )φ∗

j (r ′σ ′), (13)

with f = 1,2 labeling the fragment. Note that, by constrast to
the full density matrix of the compound nucleus ρ, the objects
ρ(f) are not one-body densities in the strict mathematical sense.
In particular, they are not projectors in Fock space, ρ(f)2 ̸= ρ(f).
Also, the usual relations ρ2 + κκ† = 0 are not necessarily
satisfied for ρ(f) and κ (f). We should therefore refer to
these objects as pseudodensities, to emphasize their empirical
nature. The diagonal component of these pseudodensities (in
coordinate⊗spin space) ρ(1)(r), ρ(2)(r), κ (1)(r), and κ (2)(r) for
each fragment can be obtained as usual; for example,

ρ(f)(r) =
∑

σσ ′

ρ(f)(rσ,rσ ′) (14)
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