
space indicates 5 large 3-sheets that project off this diagonal (zoom).
Although the CSP does not exhibit clear discontinuities in these ar-
eas, these 5 3-sheets all overlap. Our Reeb space based segmentation
enables the independent CSP visualization for each of these regions
(Fig. 11(b), bottom). Note that four of these CSPs are very similar in
shape. They correspond to 3-sheets that capture the covalent bonds
between the hydrogen and oxygen atoms (matching colors, Fig. 11(b),
top). The remaining 3-sheet (cyan) exhibits a CSP of different shape:
the corresponding region in the domain denotes the hydrogen bond
linking the two molecules, as expected by the chemists. Note that this
subtle, yet important feature projects to a small cyan area in the range.
This means that a JCN approximation of the Reeb space may miss this
feature for insufficient quantization thresholds.

Fig. 12 presents the Reeb space driven visualization of a flow sim-
ulation within a mechanical piece (Fig. 12(a)). The considered input
bivariate function is given by the flow velocity and curl magnitudes.
Originally, the Reeb space counts 4863 3-sheets. Our Reeb space
simplification algorithm (Sec. 3.5) progressively merges adjacent 3-
sheets in increasing order of range area, until a user threshold of 5%
of the overall area of f (M ) is reached. At this threshold, this simpli-
fication results in the automatic identification of 7 remaining 3-sheets
(Fig. 12(b)). These correspond to the main features of the flow: its two
inlets (dark and light blue), its two outlets (orange and red) and three
interleaved regions in the turbulence area (inset zoom). Once pro-
jected, this simplified Reeb space (Fig. 12(c), right) enables an easier
understanding of the structure of the CSP, as compared to the original
Reeb space (center). The overlap of the projected 3-sheets can be ad-
dressed by CSP peeling, to inspect layers independently (Fig. 12(d)).

6 CONCLUSION

In this paper, we presented an efficient algorithm for the computation
of Reeb spaces of bivariate functions defined on tetrahedral meshes.
By developing a comprehensive analogy with the univariate case, we
believe we have given a simple and intuitive presentation of bivariate
Reeb spaces. We detailed and discussed the core algorithmic simi-
larities and differences between the univariate and the bivariate set-
tings. As a result, we presented an algorithm that extends to the bi-
variate case the critical point contouring strategy used for fast Reeb
graph computation in the univariate setting. This results in an effi-
cient, output-sensitive and parallel technique for Reeb space compu-
tation. While our algorithm is very simple, it yields several orders of
magnitude speedups with regard to previous work, as detailed through
our experimental results. We believe this is an important practical re-
sult for the applicability of the Reeb space to scientific visualization as
it brings its computation time from hours or days down to a few dozens
of seconds, hence making bivariate Reeb space computation tractable
for the first time.

We demonstrated the utility of our algorithm by using the Reeb
space as a semi-automatic segmentation tool for bivariate data. In
particular, we showed that it could be used to separate overlapping
features in the continuous scatterplot, hence reducing its clutter and
enabling further localized inspections. Beyond this application, we be-
lieve this work opens several exciting avenues for the generalization of
topology based techniques to bivariate data, including for instance fea-
ture similarity estimation (as suggested in Fig. 11), automatic feature
segmentation for quantitative analysis, silhouette and Jacobi set sim-
plification (as suggested in Fig. 10), 2-dimensional skeletal structure
extraction for shape modeling (as suggested in Fig. 5), etc. We hope
that our companion C++ implementation will help the community in
the development of such Reeb space based visualization techniques.
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Fig. 12. Continuous scatterplot peeling for the flow velocity and curl
magnitudes within a mechanical piece. The color shade from blue
to green indicates integration time (a). While the Reeb space initially
counts 4863 3-sheets, after simplification, only 7 remain (b). These
3-sheets correspond to two inlet and two outlet regions, as well as 3
regions in the area of turbulence (inset zoom). Flow velocity and curl
magnitudes correspond to the X and Y axes in the continuous scatter-
plot (c). The projection of the simplified Reeb space (c, right) yields less
clutter than the original one (c, center, blue and white cylinders denote
the projections of extrema and saddle edges). However, several pro-
jected 3-sheets still overlap. Continuous scatterplot peeling enables the
visualization of each of these layers independently (d, matching colors).


